Detecting, estimating and correcting multipath biases affecting GNSS signals using a marginalized likelihood ratio-based method

نویسندگان

  • Cheng Cheng
  • Jean-Yves Tourneret
  • Quan Pan
  • Vincent Calmettes
چکیده

In urban canyons, non-line-of-sight (NLOS) multipath interferences affect position estimation based on global navigation satellite systems (GNSS). This paper proposes to model the effects of NLOS multipath interferences as mean value jumps contaminating the GNSS pseudo-range measurements. The marginalized likelihood ratio test (MLRT) is then investigated to detect, identify and estimate the corresponding NLOS multipath biases. However, the MLRT test statistics is difficult to compute. In this work, we consider a Monte Carlo integration technique based on bias magnitude sampling. Jensen's inequality allows this Monte Carlo integration to be simplified. The multiple model algorithm is also used to update the prior information for each bias magnitude sample. Some strategies are designed for estimating and correcting the NLOS multipath biases. In order to demonstrate the performance of the MLRT, experiments allowing several localization methods to be compared are performed. Finally, results from a measurement campaign conducted in an urban canyon are presented in order to evaluate the performance of the proposed algorithm in a representative environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation

Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result w...

متن کامل

Direction of Arrival Estimation of GNSS Signals Based on Synthetic Antenna Array

Jammer and interference are sources of errors in positions estimated by GNSS receivers. The interfering signals reduce signal-to-noise ratio and cause receiver failure to correctly detect satellite signals. Because of the robustness of beamforming techniques to jamming and multipath mitigation by placing nulls in direction of interference signals, an antenna array with a set of multi-channel re...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

The Marginalized Likelihood Ratio Test for Detecting Abrupt Changes

The generalized likelihood ratio (GLR) test is a widely used method for detecting abrupt changes in linear systems and signals. In this paper the marginalized likelihood ratio (MLR) test is introduced for eliminating three shortcomings of GLR, while preserving its applicability and generality. Firstly, the need for a user-chosen threshold is eliminated in MLR. Secondly, the noise levels need no...

متن کامل

Gustafsson : the Marginalized Likelihood Ratio Test for Detecting Abrupt Changes

| The generalized likelihood ratio (GLR) test is a widely used method for detecting abrupt changes in linear systems and signals. In this paper the marginalized likelihood ratio (MLR) test is introduced for eliminating three shortcomings of GLR, while preserving its applicability and generality. Firstly, the need for a user-chosen threshold is eliminated in MLR. Secondly, the noise levels need ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2016